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Abstract 

Considerable progress towards an understanding of complex diseases has been made in recent years due to the 
development of high-throughput genotyping technologies. Using microarrays that contain millions of single-nucleo-
tide polymorphisms (SNPs), Genome Wide Association Studies (GWASs) have identified SNPs that are associated with 
many complex diseases or traits. For example, as of February 2015, 2111 association studies have identified 15,396 
SNPs for various diseases and traits, with the number of identified SNP-disease/trait associations increasing rapidly 
in recent years. However, it has been difficult for researchers to understand disease risk from GWAS results. This is 
because most GWAS-identified SNPs are located in non-coding regions of the genome. It is important to consider that 
the GWAS-identified SNPs serve only as representatives for all SNPs in the same haplotype block, and it is equally likely 
that other SNPs in high linkage disequilibrium (LD) with the array-identified SNPs are causal for the disease. Because 
it was hoped that disease-associated coding variants would be identified if the true casual SNPs were known, inves-
tigators have expanded their analyses using LD calculation and fine-mapping. However, such analyses also identified 
risk-associated SNPs located in non-coding regions. Thus, the GWAS field has been left with the conundrum as to how 
a single-nucleotide change in a non-coding region could confer increased risk for a specific disease. One possible 
answer to this puzzle is that the variant SNPs cause changes in gene expression levels rather than causing changes 
in protein function. This review provides a description of (1) advances in genomic and epigenomic approaches that 
incorporate functional annotation of regulatory elements to prioritize the disease risk-associated SNPs that are located 
in non-coding regions of the genome for follow-up studies, (2) various computational tools that aid in identifying 
gene expression changes caused by the non-coding disease-associated SNPs, and (3) experimental approaches to 
identify target genes of, and study the biological phenotypes conferred by, non-coding disease-associated SNPs.
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Introduction: the GWAS conundrum
Considerable progress towards an understanding of 
complex diseases has been made in recent years due to 
the development of high-throughput genotyping tech-
nologies. Using microarrays that contain millions of 
single-nucleotide polymorphisms (SNPs), Genome Wide 

Association Studies (GWASs) have identified SNPs that 
are associated with many complex diseases or traits [1]. 
Such studies rely on differences in the frequency of a 
specific SNP in, for example, healthy (or control) vs. dis-
eased (or case) populations. To date, ~84.7 million vali-
dated SNPs have been identified in human populations 
[2]. GWAS arrays do not contain all mapped SNPs; rather 
they contain only index SNPs that represent SNPs in the 
same linkage disequilibrium (LD) block. However, it is 
estimated that they do capture most human genome vari-
ation through haplotype-based SNP imputation [3, 4]. 
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The SNPs identified by GWAS that are statistically signif-
icantly over-represented in the disease (or case) popula-
tions are called risk-associated SNPs and genomic regions 
containing the SNPs are called risk loci for that particu-
lar disease. As of February 2015, 2111 different associa-
tion studies have identified 15,396 index SNPs associated 
with various diseases and traits (http://www.genome.gov/
gwastudies), with the number of identified SNP-disease/
trait associations increasing rapidly in recent years [1]. 
However, it has been difficult for researchers to under-
stand disease risk from GWAS results.

First, unlike a disease such as cystic fibrosis that is 
caused by mutations in the coding region of a gene, 
GWAS-identified disease-associated nucleotide differ-
ences are rarely found in coding regions. Instead, most 
disease-associated index SNPs are located in non-coding 
regions of the genome, equally proportioned between the 
intergenic and intronic compartments [5, 6]. However, 
it is important to consider that the GWAS-identified 
index SNPs actually serve only as representatives for all 
the SNPs in the same haplotype block, and it is possible 
that other SNPs in high LD with the GWAS-identified 
index SNPs are causal for the disease. Because it was 
hoped that disease-associated coding variants would be 
identified if the true casual SNPs were known, investi-
gators began expanding their analyses to include more 
than just the index SNPs. A commonly used approach 
to investigate SNPs other than the index SNPs present 
on the standard GWAS array has been to use LD cal-
culation [7–9] together with the 1000 Genomes Project 
reference panels from different populations [2, 10]. Such 
approaches have generally expanded the list of putative 
causal SNPs from less than 100 index SNPs for a particu-
lar disease or trait to several hundred associated SNPs 
(Fig.  1; High LD SNPs). For example, 727 SNPs are in 
high LD (r2 > 0.5) with 77 index SNPs linked to prostate 
cancer [11]. However, most of these LD-associated SNPs 
are also in non-coding regions of the genome. Similarly, 
SNPs correlated with 25 colon cancer risk-associated 
index SNPs were analyzed (using an r2 > 0.5); 13 corre-
lated SNPs were located in exons (only 2 of which were 
predicted to be damaging to the protein structure), 
whereas 503 correlated SNPs were located in non-coding 
regions corresponding to promoters or enhancers [12]. 
Another approach called fine-mapping is also being used 
in attempts to move from the index SNP (which basically 
identifies a large genomic region) to a more refined list of 
putative causal SNPs located within the identified region. 
Fine-mapping studies employ dense genotyping arrays 
that contain all common SNPs within the previously 
identified risk loci, which together with imputation [7–9] 
allows investigators to perform a more complete analy-
sis of the risk regions (Fig.  1; fine-mapped SNPs) [13]. 

However, genotyping at this fine scale requires large sam-
ple sizes to provide the statistical power needed to dif-
ferentiate the candidate causal SNPs from the non-causal 
SNPs. In addition, creation of loci-specific genotyping 
arrays is quite expensive. Therefore, most fine-mapping 
analyses have been done by international consortia with 
shared interests for specific diseases or traits; examples 
include the Immunochip [14], the Metabochip [15], the 
iCOGs array [16], and the Oncoarray (http://epi.grants.
cancer/gov/oncoarray/). The majority of fine-mapping 
studies have been performed using European-ancestry 
populations in which LD blocks are longer than in other 
populations and therefore there are many correlated 
SNPs per loci, exacerbating the problems related to a 
need for large sample sizes to separate true candidate 
causal SNPs from less significantly risk-associated SNPs 
[17, 18]. However, recent fine-mapping studies of trans-
ethnic populations have shown better results in discov-
ering candidate causal SNPs [4, 19–21]; trans-ethnic 
fine-mapping increases statistical power by increasing 
the number of samples and also helps avoid false posi-
tives due to confounding factors of population stratifica-
tion. However, a recent multi-ethnic analysis of prostate 
cancer risk SNPs found that even after fine-mapping, 
most risk-associated SNPs are located in non-coding 
regions [21]. Thus, the GWAS field has been left with 
the conundrum as to how a single-nucleotide change in a 
non-coding region could confer increased risk for a spe-
cific disease. One possible answer to this puzzle is that 
the variant SNPs cause changes in gene expression lev-
els rather than causing changes in protein function. This 
review provides a description of (1) advances in genomic 
and epigenomic approaches that incorporate functional 
annotation of regulatory elements to prioritize the dis-
ease risk-associated SNPs that are located in non-coding 
regions of the genome for follow-up studies, (2) various 
computational tools that aid in identifying gene expres-
sion changes caused by the non-coding disease-associ-
ated SNPs, and (3) experimental approaches to identify 
target genes of, and study the biological phenotypes con-
ferred by, non-coding disease-associated SNPs.

Making sense of GWAS
Prioritization of SNPs associated with a specific disease 
using functional annotation
As noted above, not only do the vast majority (~93 %) of 
index SNPs in the GWAS catalog that have been asso-
ciated with specific diseases or traits lie within non-
coding regions, but also most SNPs in high LD with the 
risk-associated index SNPs and most SNPs identified by 
fine-mapping (Fig.  1; collectively identified as refined 
associated SNPs) are also located in non-coding regions. 
The current hypothesis is that one or more of these 
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risk-associated non-coding SNPs cause changes in gene 
expression of a critical gene. However, functional follow-
up experiments (described below) are both expensive and 
time-consuming and one cannot test each possible can-
didate SNP for causality. It is also important to note that 
although fine-mapping usually results in a smaller num-
ber of associated SNPs than does LD calculation, fine-
mapping has only been performed for a relatively small 
number of disease-associated loci and therefore most 

investigators are left with the problem of a fairly large 
list of possible causal SNPs. Clearly, it is necessary to pri-
oritize the list of refined associated SNPs for follow-up 
analyses.

One way to prioritize the list of SNPs is to identify 
those located in regulatory regions of the genome (Fig. 1; 
Regulatory SNPs). The first step in identifying Regula-
tory SNPs is to select from the list of Refined Associ-
ated SNPs those that lie within regulatory regions. There 
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Fig. 1  Making sense of GWAS: an overview. Shown is a flow chart of analytical and experimental steps that can be followed to understand how a 
non-coding SNP can be associated with an increased risk for a specific disease. Index SNPs are identified using GWAS arrays and then expanded to 
a larger set of SNPs (termed Refined Associated SNPs) using LD scores and fine-mapping. These Refined Associated SNPs are then prioritized using 
functional annotation to identify Regulatory SNPs (Reg SNPs) or linkage to allele-specific gene expression to identify eQTL SNPs, producing a set of 
Candidate Functional SNPs. The Candidate Functional SNPs can either be studied directly or further refined by testing the Regulatory SNPs for pos-
sible SNP-RNA linkages or by testing the eQTL SNPs for functional annotation. If a Candidate Functional SNP (yellow arrowhead) lies within a distal 
regulatory element, it can be deleted or modified using genomic nucleases or epigenomic toggle switches (Approach A); putative target genes are 
then identified using RNA-seq. Distal regulatory elements that cause changes in gene expression when deleted or modified can then be studied 
using allele-specific analyses (Approach B); promoters harboring risk-associated SNPs (pink arrowhead) can be directly studied using Approach B. 
As described in the text, cells deleted for the distal regulatory elements can be used to identify an appropriate phenotypic assay for analysis of the 
candidate target genes. Then, the genes that show expression changes that are linked to distal SNPs and the genes regulated by the promoter SNPs 
can be studied using those biological assays to identify possible therapeutic targets and/or candidates for diagnostic tests. Finally, looping assays 
can be performed to distinguish direct from indirect targets of the distal regulatory elements. It is important to note that a gene whose expression 
is indirectly affected by a non-coding SNP could be a more important diagnostic or therapeutic target than the directly affected gene
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are several types of elements involved in transcriptional 
regulation including promoters, enhancers, and nuclear 
structure-associated elements such as CCCTC-binding 
factor (CTCF) binding regions; each of these elements 
has been associated with non-coding SNPs. A promoter 
is a user-defined region, usually described as several Kb 
surrounding a transcription start site (TSS) of a known 
coding or non-coding gene (active promoters can also 
be defined by certain histone marks or RNA analysis, if 
the datasets are available for that particular cell type). 
Thus, investigators can bioinformatically identify pro-
moter SNPs. It is more difficult to identify SNPs within 
enhancers because, unlike promoters, they do not occur 
at a defined distance from a TSS. However, they can be 
identified by specific epigenomic profiles. Within recent 
years, consortia such as the Encyclopedia of DNA Ele-
ments (ENCODE) [22] and the Roadmap Epigenom-
ics Mapping Consortium (REMC) [23, 24] have used a 
variety of genome-wide methods to study the chroma-
tin state of non-coding regions in the human genome in 
hundreds of different cell types (e.g., primary cell lines, 
immortalized cell lines, and tissues). In these stud-
ies, enhancers have been identified using methods that 
detect open chromatin, specific histone modifications, 
and enhancer RNAs (eRNAs). For example, DNase-seq 
[25] has been used to identify DNase-hypersensitive 
regions (DHSs) that correspond to areas of open, accessi-
ble chromatin that contain binding motifs for transcrip-
tion factors (TFs). Although DHSs are generally a few Kb 
in length, DNase footprinting (which combines deeply 
sequenced DNase-seq data with motif information) can 
help more precisely identify the critical nucleotides for 
TF occupancy within a DHS site [26, 27]. More recently, 
ATAC-seq, a method that employs an engineered Tn5 
transposase to measure chromatin accessibility, has been 
used to define genomic maps of open chromatin; advan-
tages of ATAC-seq include the requirement for fewer 
cells (500–50,000 cells) and fewer experimental steps, 
as compared to DNase-seq [28]. The entire set of DHSs 
includes promoter regions, distal enhancer regions, 
and sites of binding of structural TFs. To further refine 
the set of distal DHSs to include only active enhancers, 
investigators use the method of ChIP-seq and antibod-
ies specific to histone modifications. For example, poten-
tially active enhancers are identified as regions of open 
chromatin with flanking nucleosomes having histone 
3 marked by monomethylation of lysine 4 (H3K4me1), 
whereas nucleosomes flanking fully active enhanc-
ers are marked by H3K4me1 and also by acetylation of 
lysine 27 on histone H3 (H3K27Ac) [22]; enhancers also 
sometimes have low levels of histone H3 trimethylated 
on lysine 4 (H3K4me3), a mark that is quite strong at 
promoters. The H3K27Ac mark at enhancers is likely 

a consequence of the binding of site-specific TFs (e.g., 
TCF7L2) that recruit histone acetyltransferases (HATs) 
such as EP300 and CBP. It is thought that the acetylation 
of the histones flanking a DHS increases the net affinity 
of other TFs to the region of open chromatin [29]. Thus, 
it seems logical that identifying active enhancers using 
TF ChIP-seq data would also be possible. However, con-
sidering the fact that ChIP-seq patterns have been iden-
tified for less than 150 TFs out of 1800 known TFs (and 
in only a few cell types), the combination of DHS and 
histone modifications is more commonly used to iden-
tify enhancers [25]. However, we note that recent studies 
have identified active enhancers using changes in levels 
of DNA methylation at regions distal from promoters 
[24, 30–34]. Finally, a different approach to identify-
ing active enhancers has been used by the FANTOM5 
project, which employed cap analysis of gene expres-
sion (CAGE) to discover active enhancers that produce 
bidirectional capped RNA. Notably, although very few 
enhancers were identified by this method, a high per-
centage of these enhancers were validated by reporter 
assays [35]. It is also important to note that enhancers 
are very cell-type specific and therefore enhancer map-
ping must be performed in the cell type(s) that are rel-
evant to the disease under study.

Several studies have shown that index SNPs and/or 
correlated SNPs that are in high LD to the index SNPs 
are enriched in enhancer regions. For example, one study 
found that non-coding index SNPs from 426 GWASs are 
enriched in enhancers present in the relevant cell types 
and that several of the index SNPs created or disrupted 
TF motifs in the identified enhancers [36]. Also, Schaub 
et al. studied 4724 GWAS index SNPs associated with 470 
different phenotypes using ENCODE data, showing that 
36 % of the SNPs are in DHSs and 20 % are in a ChIP-seq 
peak in at least one cell line. When they extended their 
analyses to SNPs that are in high LD (r2 > 0.8) with the 
index SNPs, the overlap increased by over two-fold [26]. 
These findings are consistent with a recent study in which 
investigators used H3K27Ac ChIP-seq data from normal 
and colon cancer cells and found that 270 SNPs that have 
a high LD (r2 > 0.5) with 25 colorectal cancer index SNPs 
are located in H3K27Ac sites; when the SNPs were lim-
ited to distal regions they identified 68 unique enhanc-
ers [12]. Similarly, combining H3K27Ac and H3K4me1 
ChIP-seq data and DNase-seq data from prostate cancer 
cells, Hazelett et al. identified 727 SNPs that were in high 
LD (r2 > 0.5) with 77 prostate cancer risk SNPs; of these, 
663 SNPs were in putative enhancer regions [11]. Also, 
a recent fine-mapping study of Type 1 Diabetes (T1D) 
found that fine-mapped T1D-associated SNPs are local-
ized in active enhancers of thymus, T and B cells, and 
CD34+ stem cells [37, 38].
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The working model for establishment and maintenance 
of active enhancers is that TFs bind to the DNA, posi-
tion the nucleosomes, and then serve to keep the region 
between the nucleosomes in an open conformation [29]. 
Thus, it is logical to assume that risk-associated regula-
tory SNPs would have a higher likelihood of causality if 
they disrupt or create a motif for a site-specific TF in the 
nucleosome-free region of an enhancer or DHS. Unfor-
tunately, although progress has been made in identify-
ing in vivo motifs for TFs using ChIP-seq data [39], the 
motifs for most site-specific TFs are not known. How-
ever, programs have been developed that allow investiga-
tors to incorporate information about the set of known 
TF motifs into SNP prioritization [40, 41]. Using such 
programs, Regulatory SNPs located in motifs of TFs 
known to be important in establishing or maintaining the 
phenotypic characteristics of specific cell types have been 
identified. For example, motifbreakR [41] can predict TF 
motif disruptions for a large number of provided SNPs 
using several different sources of TF motifs (see Table 1 
for details). However, it should be noted that studies have 
shown that many risk-associated SNPs (index SNPs and 
SNPs that are in high LD to index SNPs) are not precisely 
located in the conserved binding motif of TFs but are in 
nearby regions [42, 43]. It is possible that such SNPs dis-
rupt an as-of-yet unknown motif for a TF that has not yet 
been characterized by ChIP-seq. Additionally, another 
possibility is that sequences outside the core TF binding 
motif can affect TF binding. Recent work has suggested 
that the environment of the motifs, including sequence 
composition, DNA shape features, and an overall high 
similarity to the core- binding motif can contribute to 
binding affinity of TFs to various DNA sequences [44–
47]. Finally, recent studies suggest that only a minority of 
the single-nucleotide changes in TF binding motifs that 
have been identified to date actually affect binding in vivo 
of a TF, with extensive context-dependent buffering of 
the possible effects on TF recruitment that could poten-
tially occur due to changes in recognition motifs [48].

Perhaps the TF for which the most ChIP-seq experi-
ments have been performed is CTCF [49–51]. ENCODE, 
as well as many individual laboratories, have mapped 
CTCF binding in a large number of human cell types. 
Such studies have revealed that CTCF binds to promoter 
and enhancer regions, but it can also bind to regions 
of the genome that lack the histone modifications that 
specify active promoters and enhancers. For example, 
in Panc1 cells, 15  % of CTCF peaks are in promoters, 
14 % are in enhancers, and 71 % are in neither promot-
ers nor enhancers (M. Gaddis and P. Farnham, unpub-
lished data). Topologically associating domains (TADs), 
which demarcate large chromatin regions that inter-
act via looping, are enriched for CTCF binding sites at 

their boundaries, suggesting a role for CTCF-mediated 
looping in the maintenance of TADs [52]. CTCF is also 
thought to contribute to the overall 3-dimensional struc-
ture of chromatin by forming a loop through which dis-
tal enhancers and promoters can be brought into close 
proximity, perhaps leading to transcriptional activation 
of the linked promoter [51]. CTCF has also been shown 
to serve as insulator that interferes with the interac-
tion between an enhancer and a promoter and to block 
chromosome position effects of transgenes [51]. Thus, 
regulatory SNPs that disrupt or create a CTCF site may 
be of high priority for follow-up analyses. We note that 
a combined analysis of GWAS SNPs for numerous com-
plex diseases and traits did not show an enrichment for 
CTCF sites [48]. However, it is possible that only a sub-
set of the CTCF sites are functionally relevant in relation 
to GWAS variation (e.g., the structural CTCF sites may 
have a different enrichment score than the CTCF sites 
that fall within regulatory elements). It is also possible 
that variation at CTCF sites may play a role only in spe-
cific diseases. For example, a recent GWAS of a Chinese 
population identified 3 index SNPs statistically associated 
with increased risk of lung cancer that are located within 
CTCF ChIP-seq peaks in the A549 lung cancer cell line 
[53]. In addition, Ding et al. identified statistically signifi-
cant allele-specific CTCF binding data from 50 lympho-
blastoid cells lines [54] which were genotyped as a part of 
the 1000 Genomes Project, providing a source of prior-
itized SNPs to study the involvement of CTCF in disease 
risk [55]. Interestingly, only 25 % of these genetic variants 
are exactly in the CTCF motif; however, most are located 
within 1  Kb of the motif [55]. This finding is consistent 
with the studies described above showing that many risk-
associated SNPs are not in the conserved binding motif 
of TFs but are in nearby regions. Of course, it is not yet 
known if the SNPs that are nearby, but not in, CTCF 
motifs are functionally relevant.

Finally, SNPs located within CpG sites have been 
studied for their relationship to disease. Clearly, if a 
CpG site within a known motif for a TF is identified as 
a disease-associated SNP, it could alter gene regulation 
simply by changing the affinity of the TF for that region. 
In fact, several TFs do harbor CpG dinucleotides at 
critical positions in their motifs [6, 56]. However, CpGs 
can also regulate gene expression in a more region-spe-
cific way. CpG island methylation of promoter regions 
of tumor-suppressor genes is one of the driving factors 
for cancer development [57]. In addition, recent stud-
ies have shown that hyper- and hypo-methylation of 
distal elements can be linked to tumor-specific changes 
in gene expression [30]. Increased methylation of a pro-
moter or enhancer is generally thought to lead to tran-
scriptional repression, whereas decreased methylation 
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is thought to lead to gene activation. Thus, a single allele 
change at a SNP (which disrupts or increases bind-
ing of a TF by affecting DNA methylation) can lead to 
an altered epigenetic pattern of a larger region. Meas-
uring methylation levels at 22,290 CpG dinucleotides 
in lymphoblastoid cell lines of 77 individuals from the 
HapMap project, Bell et al. found 180 CpG sites in 173 
genes that are associated with SNPs located within 5 Kb 
[58]. Additionally, several diseases have been reported 
to be linked to aberrant SNP-associated methylation 
at CpGs in promoter regions [59–61]. For example, 
Hitchins et  al. found that a single-nucleotide variant 
in the 5′ UTR of the MLH1 gene resulted in increased 
methylation of the promoter, leading to transcriptional 
repression. It has been suggested that the variant SNP 
decreases recruitment of a TF, causing loss of protec-
tion from methylation on nearby CpG sites, thus leading 
to Lynch syndrome.

As described above, identification of Regulatory SNPs 
requires investigation as to whether any of the Refined 
Association SNPs fall within promoters, enhancers, TF 
binding sites, or CpG dinucleotides. Although one could 
determine if any of the relatively small set of index SNPs 
for a particular disease is located within a mapped regu-
latory element by simply visualizing the location of the 
SNP and the location of functional elements on a genome 
browser, it would be quite laborious to do this for the 
many hundreds of the SNPs in high LD with the index 
SNPs. Therefore, several different programs have been 
developed that integrate genetic information (genotyp-
ing and imputation data for GWAS index SNPs and SNPs 
in LD to index SNPs) with epigenetic information (gen-
erated by DNase-seq, ChIP-seq, or DNA methylation 
assays) and chromatin interaction data. Listed in Table 1 
are some of the publicly available functional annotation 
programs; each program has its own advantages and dis-
advantages. For example, Regulome DB [62] and Hap-
loReg [63] share similar features, automatically providing 
all possible epigenetic information for all available cell 
types and tissues for the input SNPs (the epigenetic maps 
are derived from the ENCODE and REMC databases). 
However, neither program has options for analyzing only 
the relevant cell types for the disease-associated SNPs. In 
contrast, FunciSNP [64], GREGOR [65], and Enlight [66] 
allow users to add their specific epigenetic data from the 
cell type of interest (which may not be in the public data-
bases), providing a better prioritization of the regulatory 
SNPs. Of note, GWAS3D [67] and Enlight [66] include 
an automatic analysis of chromatin interaction features 
(although such data are not yet available for many cell 
types), and Enlight automatically generates plots show-
ing LD information and overlapping annotated features 
(Fig. 2).

Prioritization of SNPs associated with a specific disease 
by linking to gene expression
A second way to prioritize risk-associated SNPs is to 
focus on the subset that show allele-specific gene expres-
sion differences, as determined using population-based 
methods. The population-based methods identify expres-
sion quantitative trait loci (eQTL), which are defined 
as genomic regions that harbor one or more nucleotide 
variants that correlate with differences in gene expression 
[68]. We note that although eQTLs are said to identify 
“loci,” most investigators use this term to refer to specific 
nucleotides (i.e., SNPs) that correlate with differences in 
gene expression [68]. Expression-associated SNPs (Fig. 1; 
eQTL SNPs) can be statistically significantly associated 
with genes that are located in a genomic region near to or 
far from the SNP in question. If associated with a nearby 
gene, the relationship is termed a “local eQTL,” whereas 
SNPs associated with genes located farther away on the 
same chromosome or on different chromosomes are 
called “distal eQTLs.” In many cases, local eQTLs work 
as cis-eQTLs, which directly affect expression of nearby 
genes (usually limited to genes within 250  Kb to 1  Mb) 
in an allelic-specific manner [68, 69]. In contrast, trans-
eQTLs cannot be applied to the study of allele-specific 
gene expression because they likely affect expression 
of the identified gene as a secondary consequence of 
changes in direct target genes. Most trans-eQTLs are 
distal eQTLs, being associated with genes found far from 
the SNP on the same chromosome or on different chro-
mosomes [70]. However, it should be noted that some 
trans-eQTLs are local eQTLs, even though nearby the 
SNP under study, the associated gene is affected as a 
secondary consequence of gene expression changes of a 
direct target gene. Most studies focus on cis-eQTLs [70] 
because trans-eQTLs require multiple testing to gain sta-
tistical power [71].

For eQTL analyses, SNPs are mapped using a genotyp-
ing array and mRNA abundance is measured by micro-
array or, more commonly in recent studies, by RNA-seq 
using hundreds of samples from cell lines or tissues that 
are relevant to the disease or traits under study. Statistical 
methods are then used to associate SNPs with transcripts 
to identify eQTLs [69]; sources of eQTL databases are 
listed in Table 2. It is important to note that all mapped 
eQTL SNPs (especially those from large studies) are not 
linked to disease; in other words, some SNPs associated 
with gene expression were not identified via GWAS. 
However, many studies have revealed that eQTLs can be 
identified for some GWAS risk loci (testing index SNPs 
or SNPs in high LD with the index SNPs); in these cases, 
the association of the SNP and expression of nearby 
genes was identified in a trait or disease-specific man-
ner [72–75]. For example, Type 2 Diabetes (T2D) index 
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Fig. 2  Prioritizing SNPs using functional annotation. Shown is a figure produced using the Enlight program. a Shown is an index SNP (rs2071278, 
indicated by the purple diamond) for Rheumatoid Arthritis and correlated SNPs within ±20 Kb; the high LD SNPs (r2 > 0.8) are indicated in orange. 
b Shown is the chromHMM segmentation for the region, with the colors (defined in the inset box) indicating the different chromatin states for that 
region in the blood cell lines, GM12878 and K562; note that the High LD SNPs fall into enhancer categories (yellow bars). c Shown are the genes 
within the region. d Shown is an eQTL plot with scores based on −log10P values, taken from the UChicago eQTL browser. e Shown is H3K27Ac and 
DNase-seq data for GM12878 and K562 and the TFs ChIP-seq track from the ENCODE browser

Table 2  Sources of eQTL databases

mirQTL miRNA QTL, trQTL transcript ratio QTL, dsQTL Dnase I sensitivity QTL

Tool Features URL PMID

NCBI eQTL browser cis‐eQTL from liver, lymphoblastoid, brain http://www.ncbi.nlm.nih.gov/projects/gap/eqtl/index.cgi

seeQTL browser for cis‐eQTL, and trans-eQTL from lymphoblastoid, 
brain, monocyte

http://www.bios.unc.edu/research/genomic_software/
seeQTL/

22171328

Chicago eQTL QTL (eQTL, dsQTL, trQTL, exonQTL) from lymphoblastoid, 
brain, liver, fibroblast, T‐cells

http://eqtl.uchicago.edu/cgi--‐bin/gbrowse/eqtl/

GTEx Portal >60 tissues eQTL data and eQTL IGV browser http://www.gtexportal.org/home/ 25954001

GeneVar >5 tissues eQTL, meQTL data and visualization https://www.sanger.ac.uk/resources/software/genevar/ 20702402

Blood eQTL Blood cis- and trans-eQTLs http://genenetwork.nl/bloodeqtlbrowser/ 24013639

Geuvadis QTL (eQTL,mirQTL, trQTL) from lymphoblastoid
cell lines

http://www.ebi.ac.uk/Tools/geuvadis--‐das/ 24037378

http://www.ncbi.nlm.nih.gov/projects/gap/eqtl/index.cgi
http://www.bios.unc.edu/research/genomic_software/seeQTL/
http://www.bios.unc.edu/research/genomic_software/seeQTL/
http://eqtl.uchicago.edu/cgi--%e2%80%90bin/gbrowse/eqtl/
http://www.gtexportal.org/home/
https://www.sanger.ac.uk/resources/software/genevar/
http://genenetwork.nl/bloodeqtlbrowser/
http://www.ebi.ac.uk/Tools/geuvadis--%e2%80%90das/
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SNPs and high LD SNPs (r2 > 0.9) are enriched in the set 
of eQTL SNPs identified using liver and fat tissues [73]. 
Also, eQTL SNPs identified using gene expression data-
sets from blood showed enrichment for association with 
autoimmune disease, but not with bipolar disorder or 
T2D [76]. It is important to note that the sets of genes 
located nearby GWAS-identified SNPs are not always 
highly concordant with eQTL-associated genes [76], sug-
gesting that some GWAS signals affect genes that are 
far away. Therefore, we cannot conclude that the target 
genes of GWAS SNPs are the same genes identified by 
cis-eQTL SNPs. For example, Musunuru et al. [77] used 
GWAS information to identify a risk SNP at 1p13 that is 
associated with both plasma low-density lipoprotein cho-
lesterol (LDL-C) and myocardial infarction (MI). Also, 
they used eQTL analysis of liver gene expression datasets 
to determine if risk SNPs in the 1p13 region are associ-
ated with nearby genes, finding that two GWAS-iden-
tified risk-associated SNPs (rs646776 and rs12740374) 
were in eQTL with the SORT1 gene. The authors suggest 
that the minor allele of rs12740374 creates a C/EBP bind-
ing site and results in increased SORT1 expression, which 
contributes to the risk for LDL-C and MI. However, it 
should be noted that SORT1 is not the nearest gene to 
rs12740374 and is located 123  Kb from the risk-associ-
ated SNP.

Although some eQTLs are shared across different cell 
types, most eQTL associations are cell-type specific [78, 
79]. These cell-type specific eQTLs are often quite far 
from the gene they are associated with and tend to have 
small effects on gene expression, reflecting the char-
acteristics of enhancer elements [78]. Using epigenetic 
information from ENCODE and REMC to functionally 
annotate 4085 intergenic eQTLs, investigators showed 
that the eQTLs which have the highest significance per 
gene are enriched in TF binding sites, enhancers, pro-
moters, and open chromatin. A recent study identi-
fied enrichment of eQTL SNPs in distal elements, but 
the SNP-gene expression linkage only appeared upon 
immune stimulation of naïve monocytes [80], suggest-
ing that new enhancers harboring eQTL SNPs were cre-
ated by immune stimuli. Several studies have suggested 
that changes in TF binding are a major result of cell-type 
specific eQTLs, leading to changes in chromatin struc-
ture, histone modification, or methylation, with result-
ant changes in gene expression [81]. In a recent study 
correlating RNA-seq data from 103 matched tumor and 
normal colon mucosa samples from Danish patients 
with germline genotyping from 90 patients, investigators 
found that many of the identified eQTLs are tumor spe-
cific. Using ChIP-seq data from a colon cancer cell line, 
they concluded that the tumor-specific eQTLs are asso-
ciated with binding of several TFs that show increased 

expression in tumors [82]. Other evidence supporting 
an important role for TF binding in the mechanism by 
which eQTLs function is provided by meQTLs, defined 
as CpG sites in which DNA methylation changes have 
association with SNPs that are several Kb away [83]. 
A recent study showed that 23 SNPs out of 109 cancer 
GWAS SNPs from 13 different cancer types had associa-
tions with methylation status [84]. Banovich et al. showed 
that meQTLs are frequently associated with changes in 
histone modification, DNase hypersensitivity, chroma-
tin accessibility, and expression changes in nearby genes. 
As described above, meQTLs are thought to affect TF 
binding, which in turn influences DNA methylations at 
nearby CpG sites [83]. In the cases where meQTLs are 
eQTLs, a positive correlation between methylation and 
expression was shown when meQTLs are not near a TSS 
(median distance of  ~7  Kb) and a negative correlation 
between methylation and expression was shown when 
meQTLs are near a TSS (median distance of  ~1  Kb), 
which is consistent with findings that active promoters 
show low DNA methylation whereas bodies of actively 
transcribed genes show high DNA methylation [83, 85].

Experimental approaches to identify target genes 
of regulatory SNPs and eQTL SNPs
Although investigators often use either functional anno-
tation or eQTL to identify prioritized SNPs (Fig. 1; col-
lectively referred to as Candidate Functional SNPs), using 
a combination approach may help rank the individual 
lists for follow-up study. The set of Regulatory SNPs 
(especially those obtained using high LD and not fine-
mapping) is usually larger than the set of eQTL SNPs. 
Therefore, determining if any of the large set of enhanc-
ers that harbor risk-associated SNPs are also in eQTL 
with one or more genes may identify a subset of risk-
associated enhancers that have a higher probability of 
having an impact on gene expression. Similarly, although 
the set of eQTL SNPs is usually not large, it is difficult 
to perform functional follow-up studies of the entire set. 
Therefore, determining which of the eQTL SNPs are also 
located in a regulatory region could help prioritize the 
list. Having identified a set of Regulatory and/or eQTL 
SNPs, the next logical step would seem to be functional 
follow-up studies of the genes regulated by the SNP-har-
boring elements. However, it is not easy to determine the 
actual target gene of a regulatory element. It is a com-
monly held assumption that a risk-associated SNP that 
falls within a promoter region influences expression of 
that particular gene. In fact, if the gene in question has 
a known biological function consistent with the possibil-
ity that it may influence cellular phenotype in a manner 
consistent with the disease being studied, then investi-
gators often go straight to studying that gene. However, 



Page 10 of 18Tak and Farnham ﻿Epigenetics & Chromatin  (2015) 8:57 

some have postulated that promoters can interact with 
other promoters [86] and can also have enhancer activ-
ity, influencing the expression of other genes [87]. Thus, 
it may be premature to assume that SNPs located near to 
the 5′ end of a gene only influence the regulation of that 
particular gene. It is even more difficult to predict what 
gene is directly regulated by an enhancer because they 
are located distal from a TSS, can regulate genes in an 
orientation-independent manner, and, most importantly, 
can skip over nearby genes to regulate genes farther away. 
Thus, although one hypothesis is that the gene nearest to 
a promoter or an enhancer that harbors a regulatory SNP 
is the disease-related gene, in most cases this hypothesis 
has not been proven (or even tested). However, there are 
unbiased approaches that can be used to experimentally 
identify target genes of the regulatory elements harboring 
Candidate Functional SNPs. This can be accomplished by 
manipulating the genomic region containing the SNPs in 
question and determining if expression of the putative 
target gene is in fact altered and/or by testing physical 
interactions between the region harboring the SNP and a 
putative target gene using looping assays.

Deletion or epigenetic modification of distal regula-
tory elements harboring Candidate Functional SNPs 
One approach towards identifying a target gene of a dis-
tal element is to delete or epigenetically modify the ele-
ment and study subsequent effects on the transcriptome 
(Fig.  1; Approach A). We note that because deleting or 
inactivating an entire promoter region would automati-
cally eliminate expression from that gene (making it 
difficult to determine the exact role of the SNP), analy-
sis of Candidate Functional SNPs located in promoters 
should begin with specific targeting methods described 
below (Fig.  1; Approach B). A traditional method to 
study a distal regulatory element in the genome of cul-
tured cells or in a mouse model has been to remove or 
replace a wildtype regulatory element with a mutated 
version using loxP and the Cre recombinase. In a recent 
study, the loxP-Cre recombination method was used 
to delete an enhancer from the mouse genome that is 
located within a region that corresponds to a region of 
the human genome harboring a colon cancer GWAS SNP 
[88]. Mice lacking this enhancer element were resistant 
to intestinal tumor formation, possibly due to down regu-
lation of Myc, which is located 335 kb from the deleted 
sequence. Although these results are promising, there are 
disadvantages in using the loxP-Cre system. For example, 
cloning of the plasmids needed for homologous recom-
bination is laborious and the insertion of the foreign 
loxP DNA sequence into the genome could potentially 
affect gene expression [89]. Fortunately, recently devel-
oped technologies that are based on zinc finger proteins 
(ZFPs), transcription activator-like effectors (TALEs), 

or the clustered regularly interspaced short palindromic 
repeats (CRISPRs) have allowed researchers to inves-
tigate functionality of genomic elements in the endog-
enous context in almost any organism [90]. Using these 
genomic engineering platforms, regulatory elements can 
be deleted from the genome without the introduction 
of exogenous sequences. In addition, the same genomic 
platforms can be used to epigenetically alter the genomic 
sequences containing a risk-associated SNP.

Regulatory elements harboring Candidate Functional 
SNPs can be deleted using zinc finger-based nucleases 
(ZFNs), TALE-based nucleases (TALENs), or CRISPR-
associated protein 9 (Cas9)-based nucleases (CRISPR/
Cas9) [90, 91]. ZFNs and TALENs work as heterodimers, 
with each monomer consisting of multiple DNA binding 
domains and a partial Fok1 nuclease. The DNA binding 
domains of ZNFs are tandem arrays of C2H2 zinc fin-
gers, with each finger recognizing 3-bp of DNA; ZFNs 
are created such that each half of the heterodimer recog-
nizes between 9 and 18 bp of DNA at the target cut site. 
The DNA binding domains of TALENs are composed of 
a tandem array of repetitive 33–35 amino acid modules, 
with each module recognizing 1-bp of DNA; TALENs are 
usually created such that they recognize between 12 and 
19 bp of DNA at the target cut site. Binding of a pair of 
heterodimeric ZFNs or TALENs at target sequences leads 
to Fok1 dimerization and DNA double strand breaks 
(DSB) [92]. Because TALENs can be assembled based on 
a single bp recognition schema, they can be targeted to a 
larger percentage of the genome than can ZFNs, which 
are based on a 3-nt motif schema. Also, the DNA binding 
domains of TALENs are easier to assemble than are zinc 
finger domains. In contrast to ZFNs and TALENs, which 
rely on protein-target DNA interaction, CRISPR/Cas9 
nucleases use complementary binding between RNA and 
DNA [91]. The most widely used CRISPR/Cas9 system 
has two components; the Cas9 nuclease and a guide RNA 
(sgRNA) that can bind to a specific target DNA sequence 
and recruit Cas9 to that genomic location, resulting in 
a DSB [91, 93]. Construction of CRISPRs only requires 
cloning RNA sequences that will hybridize to target sites 
[90]. A recent study has shown that both the TALE and 
CRISPR/Cas9 platforms are remarkably specific in both 
DNA binding and gene regulation and, importantly, 
can be successfully targeted to closed chromatin [94]. 
Because of the ease of cloning, reports of high targeting 
specificity [90], and accessibility of the guide RNAs to 
regions of methylated DNA [95], most investigators have 
begun using the CRISPR/Cas9 system to make DSBs in 
human cells [91].

Deletion of regulatory elements by ZFNs, TALENs, or 
CRISPR nucleases requires targeting functional nucle-
ases (heterodimeric in the case of ZFNs or TALENs or 
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monomeric in the case of CRISPR nucleases) to both 
sides of the element. DSBs occur at both target sites, 
resulting in local sequence alterations at each target site 
and loss of the intervening sequences. Recent studies 
have shown that genomic regions ranging from several 
bp to more than 1 Mb can be deleted [96–99], with dele-
tion efficiency having an inverse correlation with the size 
of the deleted region [100]. The frequency of obtaining 
biallelic deletions in normal cells having diploid chro-
mosome numbers is much higher than when multi-copy 
genomic regions (created by amplification or increased 
chromosomal copy numbers) in cancer cells are targeted. 
In most cases, many clones must be analyzed to identify 
cells that lack all copies of the regulatory element under 
study. It is also important to keep in mind that if a regula-
tory element plays a large role in controlling expression 
of an essential gene, then deletion of all copies of that 
element from the genome could affect cell proliferation 
or survival [100]; in this case, cells having monoallelic 
or partial loss of the copies of the element (in the case of 
aneuploid cancer cells) must be analyzed. Several recent 
studies have used genomic nucleases to delete regulatory 
elements and identify target genes. For example, Li et al. 
deleted a 13  Kb section of an enhancer located 100  Kb 
downstream of the Sox2 gene and observed ~90 % down-
regulation of Sox2 gene expression [98]. Myer et  al. 
deleted a Vitamin D receptor (VDR) binding region 
located 10  Kb upstream of the Mmp13 gene and found 
that VDR-mediated regulation of Mmp13 was abol-
ished. They also deleted a RUNX2 binding region located 
30 Kb upstream of Mmp13 and observed a complete loss 
of Mmp13 expression [101]. Hnisz et  al. deleted several 
individual H3K27Ac peaks within a large enhancer in 
embryonic stem cells and showed that each individual 
constituent modestly contributed to expression of a tar-
get gene [102]. Deletion of enhancers in human colon 
cancer cells has shown variable effects on the transcrip-
tome. For example, deletion of enhancers that have colon 
cancer-associated SNPs resulted in the downregulation 
of hundreds of genes; in contrast, deletion of an enhancer 
lacking colon cancer-associated SNPs affected very few 
genes (Y.G. Tak and P.J. Farnham, unpublished data).

An alternative method to identify target genes for distal 
Candidate Functional SNPs is to modulate the chroma-
tin state of the element using ZFPs or TALEs fused to a 
chromatin modifying domain or by using a “dead” Cas9 
that has no nuclease activity (dCas9) fused to a chro-
matin modifying domain; such engineered systems are 
termed “epigenetic toggle switches.” To mimic deletion 
of an enhancer, epigenetic repressors can be employed. 
The lysine-specific histone demethylase KDM1A (also 
known as LSD1) and a KRAB domain that recruits the 
KAP1/SETDB1 histone methylase have been fused to 

TALEs and dCAS9; constructs having KDM1A should 
decrease active histone methylation marks whereas 
constructs having the KRAB domain should increase 
inactivating histone methylation marks. One study has 
suggested that dCas9-KRAB is more efficient than TALE-
KRAB for inactivating enhancers, perhaps due to steric 
hindrance caused by bound dCas9 in preventing recruit-
ment of activating factors [103]. Another study that tar-
geted dCas-LSD1 to the distal enhancer of Oct4 and 
Tbx3 showed loss of H3K4me2 and a dramatic decrease 
of H3K27Ac at enhancer regions. Interestingly, the action 
of dCas9-LSD1 was shown to be specific to enhancers, 
with very little consequences if targeted to promoters. In 
contrast, in another study dCas9-KRAB was more effec-
tive at promoters, resulting in an increase of H3K27me3 
or H3K29me3 level at targeted promoters but not at tar-
geted enhancers [104].

To achieve the opposite effect, investigators have used 
domains such as VP64, an activating domain that recruits 
HATs, as well as the enzymatic domain of the p300 HAT 
to increase the levels of active epigenetic marks at regula-
tory elements. Gao et al. modified enhancers that regulate 
the Oct 4 gene using either TALE-VP64 or dCas9-VP64. 
These enhancers are normally only active in embryonic 
stem cells and are marked by the repressive histone modi-
fication H3K27me3 in mouse embryonic fibroblasts. They 
found that dCas9-VP64 less robustly activates the Oct4 
enhancers compared to TALE-VP64; in addition, TALE-
VP64 constructs targeted to these enhancers decreased 
levels of H3K27me3 and increased levels of the active 
marks H3K27Ac and H3K4me1 [103]. Polstein et  al. 
used TALE-VP64 and dCas9-VP64 for comparison in 
genome-wide DNA binding, gene expression, and DHS-
seq [94]. Although both platforms demonstrated high 
specificity in DNA binding and gene expression assay, 
there were several differences. Namely, ChIP-seq sig-
nals at the target sites were higher for dCas9-VP64 than 
for TALE-VP64, whereas gene expression was greater 
using TALE-VP64. The authors speculate that perhaps 
the dissociation of genomic DNA caused by the RNA-
DNA interactions mediated by the guide RNA affected 
nearby transcription complexes; they suggest that new 
dCas9-based activator platforms may show more robust 
transcriptional activity [105]. A recent study showed that 
the catalytic domain of the HAT P300 (P300core) fused to 
dCas9 could activate target enhancers and promoters. In 
this study, a single gRNA targeting an enhancer region 
with dCas9-P300 core was sufficient to activate target 
gene expression, whereas other dCas9 activators required 
several gRNAs to achieve high levels of gene expression 
[106]. The authors suggested that the P300 domain may 
be superior to the VP64 domain because P300 directly 
regulates histone acetylation whereas VP64 must recruit 
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a HAT. It is possible that many of the differences in effec-
tiveness of the various activating or repressing epigenetic 
toggle switches in the different studies are due to specific 
features of the exact promoters and enhancers that were 
studied. However, considering the ease of cloning guides 
RNAs, it seems that CRISPR/dCas9 constructs such as 
dCas9-P300core and dCas9-LSD1 could become a stand-
ard method used to identify target genes after turning on 
repressed enhancers or turning off activated enhancers, 
respectively.

Specific targeting of Candidate Functional SNPs Once 
deletion or epigenetic modification of a distal regula-
tory element has been shown to have functional conse-
quences, a more detailed analysis can be performed to 
compare the effects of the risk and non-risk alleles and 
to identify specific nucleotides within the element impor-
tant for regulation; this same approach can be used to 
study the effect of a SNP on the activity of a promoter 
region (Fig.  1; Approach B). In traditional approaches, 
investigators have used luciferase reporter assays to test 
individual TF binding sites of enhancers. Such studies 
require removing putative enhancer elements from their 
native chromosomal structure and location and ligating 
them into luciferase constructs such that they regulate 
a heterologous promoter [107, 108]. In addition to not 
using the correct promoter to test enhancer elements, the 
choice of cell type could influence the results for enhanc-
ers, which function in a highly cell-type specific manner. 
Another approach using mice involves pronuclear injec-
tion of endogenous versus mutated enhancer sequences 
linked to a lacZ gene [109]. These approaches have issues 
regarding copy number and position-dependent effects 
on reporter gene activity and effects of foreign DNA 
sequences on the native genomic landscape that perturb 
endogenous gene expression [109]. More recent studies 
have used genomic engineering to compare endogenous 
versus mutated regulatory elements. When CRISPR/
Cas9 makes a double stranded break, cells use either non-
homologous end-joining (NHEJ) or homology-directed 
repair (HDR) to repair the break [91]. DNA repair medi-
ated by NHEJ is used when two CRISPR nucleases are 
targeted to either side of an enhancer, resulting in local 
alterations at each target site and loss of the interven-
ing sequences. However, because NHEJ results in small 
insertions or deletions at the site of cleavage this method 
can also be used for disrupting TF motifs if one guide 
RNA is precisely targeted to the motif. Another way to 
study the precise effects of removing or altering a SNP is 
to substitute a section of the genome with exogenously 
provided DNA, using the HDR pathway. By providing, 
along with the guide RNAs and Cas9, a donor DNA frag-
ment that is basically identical to the genomic sequence 
but contains the alternative SNP allele or a mutation of a 

TF motif, a precise exchange of genomic regions can be 
accomplished.

In one study, Vierstra et al. deleted three DHSs located 
62, 58, and 55  Kb away from the TSS of the BCL11A 
gene, which encodes a TF that represses fetal hemo-
globin (HbF) levels. Deletion of the DHSs located at 55 
and 58  Kb away using TALENs led to downregulation 
of BCL11A and increased level of HbF, but no effect 
was seen after deletion of the DHS located 62  Kb away 
[110]. This study provides an excellent example that 
demonstrates the utility of deleting regulatory elements 
prior to performing more detailed mutational analyses 
of an element. In this case, studies of individual bind-
ing sites in the DHS located 62 Kb away would have not 
been useful. Following upon the deletion studies, Viestra 
et al. then used ZFNs to disrupt five TF footprints in the 
enhancer located 58  Kb away from BCL11A and found 
that disruption of one of the TF footprints led to reduc-
tion of BCL11A. Another method for identifying critical 
regions of an enhancer is to use tiled guide RNAs with 
Cas9. Investigators used  ~150 to  ~200 different guide 
RNAs to target the +55, +58, and +62 DHS regions of 
the BCL11A locus. They found that guide RNAs that 
disrupted the +58 DHS showed the most effect on gene 
expression [111]. Even though HDR is less efficient com-
pared to NHEJ, the fact that this mechanism can be used 
to exchange DNA fragments between a plasmid and the 
genome makes this the method of choice to study SNP-
specific differences. Several studies have used CRISPR/
Cas9 and HDR-mediated genome editing to change 
SNPs in mice and cell culture model systems [112–116]. 
The most common method is to introduce plasmids that 
express the guide RNAs and Cas9, along with a plas-
mid that contains the donor sequence (e.g., an enhancer 
fragment that has the SNP changed to the other allele). 
Claussnitzer et  al. transfected guide RNAs along with 
Cas9 and donor DNA plasmids into cultured adipose 
cells to switch a T2D risk SNP to the non-risk SNP allele, 
affecting binding of a TF and causing a decrease in tar-
get gene expression [116]. Other studies have reported 
an increased efficiency of HDR-mediated genome editing 
using purified guide RNAs and Cas9 mRNA in place of 
the expression plasmids and single stranded oligodeoxy-
nucleotides having homology arms in place of the double 
stranded DNA [117, 118]. Using this strategy in a mouse 
model, Han et  al. substituted a 5-nt sequence within 
an intronic region of the Cnn1 gene, which disrupted a 
CArG box for SRF and caused a reduction in expression 
of Cnn1 [112]. Finally, these genomic tools can be used 
to study orientation dependence of a region harboring 
a Candidate Functional SNP. CTCF-mediated loops are 
frequently formed in a convergent orientation involving 
homodimerization of CTCF proteins located quite far 
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apart on the genome, with the orientation of the CTCF 
sites determining the choice of interaction between spe-
cific enhancers and promoters [119, 120]. Using 2 guide 
RNAs and Cas9, Guo et al. inverted the region contain-
ing a CTCF binding site, switching the CTCF orientation 
with respect to surrounding CTCF sites; they found that 
this inversion resulted in changes in gene expression pat-
terns [119].

Disease‑related functional analyses
As described above, an integrated and ordered approach 
should be used to investigate the role of non-coding 
SNPs in gene expression. Namely, after SNP prioritiza-
tion, a combination of deletion or modification of a regu-
latory element plus eQTL analyses can provide a list of 
candidate target genes. However, an analysis of non-cod-
ing risk-associated SNPs is not complete without further 
characterization of how genes whose activity is influ-
enced by a particular SNP affect initiation, progression, 
or manifestation of the disease under study. Identifying 
the causal gene(s) will provide insights into the disease 
and perhaps also provide new diagnostic or therapeutic 
targets.

It is likely that manipulation of a regulatory element or 
eQTL analyses will identify more than one candidate tar-
get gene. Thus, it may be difficult to know which of the 
genes whose expression is linked to the SNP should be 
tested in phenotypic assays. Investigators often choose 
putative causal genes based on (a) proximity to the regu-
latory element, (b) degree to which expression is affected, 
or (c) a gene function that can be easily imagined to 
contribute to the disease risk. Each of these choices is 
fraught with problems. For example, as discussed above, 
genes are not necessarily near their regulatory elements. 
Another confounding issue is that changes in mRNA do 
not always lead to similar changes in protein levels [121, 
122] and thus the genes that show the largest changes in 
mRNA might not necessarily produce the largest changes 
in protein. Finally, gene function is often assigned based 
on the first set of experiments performed on that gene; 
many genes function in multiple networks, often in a tis-
sue-specific manner. Therefore, it is important to keep in 
mind that identifying a causal gene may require testing 
several different candidates. If one of the candidate tar-
get genes is tested with negative results, this could mean 
either that the candidate SNP is not really linked to the 
disease, that the wrong assay was used, or that the wrong 
candidate gene was assayed. One approach to deal with 
this uncertainty is to first develop a functional assay in 
which effects can be observed upon deletion or modifi-
cation of the SNP-harboring element; if the element can 
be shown to affect a particular cellular phenotype, then 
individual candidate target genes can subsequently be 

studied using that same assay. For example, Claussnitzer 
et  al. examined the effects of CRISPR-Cas9-mediated 
editing on cellular signatures of obesity. By changing the 
risk allele to the non-risk allele, they observed an increase 
in the basal metabolic rate and increased thermogenesis, 
supporting the concept that manipulation of a regulatory 
element can provide important physiological information 
without knowing the exact target gene [116].

If studying GWAS loci related to cancer, methods that 
are used for functional follow-up studies include prolif-
eration and cell migration assays [18]. However, cultured 
cancer cell lines are not ideal model systems because of 
their genomic instability (which leads to variable karyo-
types) and because isolated cancer cell lines grown in 
tissue culture dishes do not properly represent the com-
plex environment of the cells in the context of either a 
normal tissue or a tumor. Investigators have begun to 
use 3 dimensional organoids [123], normal cell lines, or 
isogenic ES or iPS cells [124, 125] to try to reproduce a 
more natural cellular environment for functional stud-
ies. However, even these assays do not allow the study 
of effects seen only within a complex tissue. If a mouse 
model exists that closely reproduces the human disease, 
then perhaps this would be the ideal system to use; the 
phenotypic influence of a SNP and/or putative causal 
target gene may be more consequential in a living organ-
ism than in a short-term cell culture assay. For example, 
when a mouse lacking a homologous enhancer that is 
associated with colon cancer in humans was crossed to a 
mouse that spontaneously develops tumors in the intes-
tine and colon, the incidence of polyp formation was 
reduced in their offspring [88]. Another issue to consider 
is that an individual SNP or regulatory element may not 
cause dramatic phenotypic differences. Instead, it may be 
necessary to study combinations of SNPs. A recent report 
evaluating the combinatorial effects of SNPs showed that 
different SNPs in the same LD block identified different 
enhancers that cooperatively regulate the same target 
gene [126]. Such studies suggest that altering an individ-
ual GWAS-identified regulatory element may have fewer 
functional consequences than inactivation of a target 
gene. However, if multiple target genes work together to 
contribute to disease risk then even moving from SNP to 
target gene may not solve the problem. Perhaps investiga-
tors could use multiplexing CRISPR/Cas9 systems [127–
129] to simultaneously target many regulatory elements 
and/or putative target genes from several different risk-
associated loci to test for combinatorial effects in pheno-
typic assays [130].

If an appropriate assay is identified whose outcome is 
influenced by loss or modification of the SNP or regula-
tory element, then candidate target genes can be tested 
using that same assay in the hopes of identifying the 
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causal gene. Commonly used approaches to investigate 
the function of a candidate causal gene include over-
expressing an exogenous form of the gene (e.g., using a 
cloned cDNA) or reducing levels of the endogenous gene 
using RNAi tools [131]. In a recent study of the FTO 
locus, which is related to T2D, Claussnitzer et al. identi-
fied SNPs in an enhancer that is only active during early 
adipocyte differentiation and showed that the expression 
of candidate target genes (IRX3 and IRX5) correlated 
with the presence of the risk-allele haplotype. Cells har-
boring the risk allele showed increased thermogenesis, a 
hallmark of obesity. The investigators showed, using pri-
mary preadipocytes isolated from risk-allele carriers, that 
reducing levels of IRX3 or IRX5 restored thermogen-
esis to non-risk levels and that overexpression of IRX3 
in preadipocytes that contain non-risk allele produced 
the opposite effect [116]. Another group used an IRX3 
knockout mouse as well as mice conditionally express-
ing a dominant negative form of IRX3 to demonstrate a 
link between the relationship of IRX3 to body mass and 
energy homeostasis [132]. More recently, alternative 
approaches for overexpressing or repressing genes have 
been developed that are based on the genomic engi-
neering tools described above. For example, investiga-
tors have used CRISPR/Cas9 nucleases to mutate coding 
regions [133] and epigenomic tools such as TALEs and 
dCAs9 fused to activator or repression domains have 
been used to regulate the promoter of a gene of interest 
[134]. However, it is important to consider that overex-
pressing a gene from a cDNA may not appropriately pro-
vide the correct splice variant [135] and that inactivation 
methods such as siRNA, shRNA, or genomic nucleases 
have the inherent problem of off-target effects [136].

Conclusions
As detailed within, investigators are making great strides 
toward understanding the functional relevance of non-
coding SNPs and how they can contribute to disease risk. 
With the advent of new genome engineering tools, puta-
tive target genes are now being associated with GWAS 
index SNPs for a variety of diseases. However, a limita-
tion of the genomic and epigenomic editing technolo-
gies described above is that it is hard to distinguish target 
genes directly regulated by a risk-associated enhancer 
from genes whose expression has been indirectly affected 
as a consequence of the expression changes of the direct 
targets. For example, changes in expression of a TF can 
lead to subsequent changes in expression of genes regu-
lated by that TF and changes in expression of a kinase 
can lead to alterations of many components of critical 
signaling pathways. A recent study has shown that dele-
tion of a single enhancer in colon cancer cells can lead to 
changes in expression of hundreds of genes, most likely 

due to the fact that the direct target gene regulated by 
that enhancer is the MYC oncogene (Tak and Farnham, 
unpublished data).

One approach that can be used to distinguish genes 
that are directly vs. indirectly affected by a risk-associated 
enhancer is to perform physical interaction assays. Many 
interaction assays are based on principles of the chromo-
some confirmation capture (3C) assay, which involves 
capturing chromosome interactions by formaldehyde 
cross-linking, followed by digestion with a restriction 
enzyme and subsequent ligation of DNA regions that 
were brought together by protein–protein interactions; 
ligation frequency between two loci is assessed using 
qPCR [137]. Using 3C, Zhang et al. investigated all pos-
sible interactions between a prostate-specific enhancer 
and genes that are within an  ~3  Mb window, identify-
ing a single loop to a gene that is 1  Mb away from the 
enhancer [138]. However, the results from 3C assays 
are limited to a pre-selected region, excluding the dis-
covery of interactions with regions beyond the tested 
genomic window. A modification of 3C, circular chro-
mosome conformation capture followed by sequencing 
(4C-seq), allows the investigation of all possible interac-
tions mediated by a specific enhancer by employing high-
throughput sequencing instead of qPCR. Using 4C-seq, 
investigators showed that enhancers located within an 
intron of the FTO gene and harboring obesity and T2D 
GWAS-identified SNPs do not interact with the FTO 
promoter but instead interact with the IRX3 gene which 
is located 500 Kb downstream [132]. Hi-C, another vari-
ation of 3C, can be used to study all chromatin interac-
tion within the genome. Unfortunately, the majority of 
Hi-C experiments capture interactions separated by at 
least 1  Mb [130] and thus may miss nearby enhancer-
promoter loops. However, a recent modification of Hi-C, 
called Capture Hi-C, which increases the resolution of 
the mapped interactions, has been used to study colon 
cancer risk SNPs. These experiments identified interac-
tions that are enriched with colon cancer-specific TF 
binding sites [139]. This technique was also used to iden-
tify short-range interactions between an enhancer and a 
gene 26  Kb away [140]. Therefore, to study interactions 
between enhancers and promoters, investigators should 
consider methods such as Capture-C [139] or HiCap 
[86] since they not only provide better resolution, but 
also can detect hundreds of interactions in one experi-
ment. Importantly, even though looping assays that iden-
tify interactions between regulatory elements harboring 
SNPs and promoters can provide clues as to the identity 
of putative target genes, it is important to compare these 
results to those in which the regulatory element has been 
experimentally deleted or modified. Genes whose expres-
sion levels are linked to the regulatory element and that 
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are also involved in promoter-enhancer loops are likely 
to be direct targets, whereas genes whose expression lev-
els are linked to the element but no loops are found can 
either be indirect targets or direct targets that are diffi-
cult to identify due to limitations of the current looping 
assays; it is also possible that enhancer-promoter loops 
will be identified that are not related to genes whose 
expression changes upon manipulation of the enhancer.

Finally, it is important to return to the overarching rea-
son as to why GWAS experiments are performed, i.e., a 
desire to have a better understanding of the set of genes 
that contribute to increased risk for a particular disease. 
It is important to keep in mind that a gene whose expres-
sion is indirectly affected by a non-coding SNP could be a 
more important diagnostic or therapeutic target that the 
direct target gene. Thus, it is critical to identify both the 
direct targets of a risk-associated regulatory element and 
other genes affected by reduction of levels of the direct 
targets. This requires genomic manipulation with sub-
sequent gene expression analyses; looping assays cannot 
identify indirect targets or affected signaling pathways. 
Identifying a therapeutic agent against either a direct or 
an indirect target gene that could dampen the pheno-
typic consequences (i.e., increased disease risk) conferred 
by the risk-associated SNP would provide a wonderful 
molecular solution to studies that begin with epidemio-
logical population analyses.
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